organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-1,3-Bis(4-chlorophenyl)-2-(1H-1,2,4triazol-1-yl)prop-2-en-1-one

Ling-Ling Dai, Ben-Tao Yin, Jing-Song Lv, Sheng-Feng Cui and Cheng-He Zhou*

Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 8 April 2012; accepted 13 April 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 14.9.

In the title molecule, $C_{17}H_{11}Cl_2N_3O$, the C=C bond connecting the triazole and 4-chlorophenyl groups adopts a Z geometry. The dihedral angles formed by the triazole ring and the 4-chloro substituted benzene rings are 67.3 (1) and 59.1 $(1)^{\circ}$. The dihedral angle between the two benzene rings is 73.5 (1)°.

Related literature

For the pharmacological activity of triazole compounds, see: Wang & Zhou (2011); Zhou & Wang (2012). For the biological activity of chalcones, see: Jin et al. (2010). For related structures, see: Wang et al. (2009); Yan et al. (2009). For the synthesis, see: Yin et al. (2012).

Experimental

Crystal data C17H11Cl2N3O

 $M_{\rm w} = 344.19$

Triclinic, $P\overline{1}$	V = 807.1 (8) Å ³
a = 5.588 (3) Å	Z = 2
b = 11.850 (7) Å	Mo $K\alpha$ radiation
c = 12.653 (8) Å	$\mu = 0.41 \text{ mm}^{-1}$
$\alpha = 74.787 \ (10)^{\circ}$	T = 296 K
$\beta = 88.884 \ (9)^{\circ}$	$0.22 \times 0.18 \times 0.15 \text{ mm}$
$\gamma = 86.461 \ (9)^{\circ}$	

Data collection

Bruker APEXII CCD	4414 measured reflections
diffractometer	3104 independent reflections
Absorption correction: multi-scan	2458 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.013$
$T_{\min} = 0.915, \ T_{\max} = 0.941$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	208 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
3104 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2011D007, XDJK2012B026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5453).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jin, L., Yan, C.-Y., Gan, L.-L. & Zhou, C.-H. (2010). Chin. J. Biochem. Pharm., 31, 358-361.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, 01113.
- Wang, Y. & Zhou, C.-H. (2011). Sci. Sin. Chim. 41, 1429-1456.
- Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.
- Yin, B.-T., Lv, J.-S., Wang, Y. & Zhou, C.-H. (2012). Acta Cryst. E68, o1197.
- Zhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239-280.

supplementary materials

Acta Cryst. (2012). E68, o1456 [doi:10.1107/S1600536812016170]

(Z)-1,3-Bis(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

Ling-Ling Dai, Ben-Tao Yin, Jing-Song Lv, Sheng-Feng Cui and Cheng-He Zhou

Comment

Triazoles as an important type of five-membered aromatic heterocycles have been paid increasing attention for their broad bioactive spectrum in medicinal chemistry (Wang *et al.*, 2011; Zhou *et al.*, 2012). The incorporation of a triazole ring into chalcone skeletons could largely improve bioactivities like antimicrobial, anticancer, antiviral and anti-inflammatory (Jin *et al.*, 2010). In view of this, we have synthesized and reported some triazolylchalcones (Wang *et al.*, 2009; Yan *et al.*, 2009; Yin *et al.*, 2012). Herein, the crystal structure of title compound (I) is reported.

The molecular structure of (I) is shown in Fig. 1. The C8=C11 bond adopts a Z geometry. The atoms in the region of the double bond have an essentially planar arrangement *i.e.* the r.m.s. deviation the atoms C7/C8/C11/C12/N1 is 0.025 Å. The torsion angles of C12-C11=C8-C7 and C12-C11=C8-N1 are -174.66 (17)° and 5.7 (3)°. The dihedral angles formed by the triazole ring and the 4-chloro-substituted benzene rings are 67.3 (1)° (C1-C6) and 59.1 (1)° (C12-C17), respectively. The dihedral angle between the two benzene rings is 73.5 (1)°.

Experimental

Compound (I) was prepared according to the procedure of Yin *et al.* (2012). Single crystals were grown by slow evaporation of a solution of (I) in ethyl acetate and petroleum ether (1:3, V/V) at room temperature.

Refinement

H atoms were placed at calculated position with C—H = 0.93 Å. The $U_{iso}(H)$ values were set equal to $1.2U_{eq}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of (I), showing the displacement ellipsoids at the 50% probability level.

(Z)-1,3-Bis(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en- 1-one

Crystal data	
$C_{17}H_{11}Cl_2N_3O$ $M_r = 344.19$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 5.588 (3) Å b = 11.850 (7) Å c = 12.653 (8) Å a = 74.787 (10)° $\beta = 88.884$ (9)° $\gamma = 86.461$ (9)° V = 807.1 (8) Å ³	Z = 2 F(000) = 352 $D_x = 1.416 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2086 reflections $\theta = 3.3-27.2^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.22 \times 0.18 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.915, T_{\max} = 0.941$	4414 measured reflections 3104 independent reflections 2458 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -6 \rightarrow 6$ $k = -7 \rightarrow 14$ $l = -14 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 1.02 3104 reflections 208 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 0.1439P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{max} = -0.21 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.58438 (14)	0.60011 (6)	-0.17465 (5)	0.1010 (3)	
Cl2	0.14916 (9)	0.80981 (5)	0.64259 (4)	0.07445 (19)	
C1	1.4458 (4)	0.6784 (2)	-0.08893 (15)	0.0703 (6)	
C2	1.5551 (4)	0.7730 (2)	-0.07247 (16)	0.0719 (6)	
H2A	1.6975	0.7964	-0.1085	0.086*	
C3	1.4505 (4)	0.83280 (18)	-0.00168 (16)	0.0654 (5)	
H3A	1.5235	0.8969	0.0100	0.079*	
C4	1.2364 (3)	0.79806 (16)	0.05257 (14)	0.0532 (4)	
C5	1.1286 (4)	0.70284 (18)	0.03344 (15)	0.0637 (5)	
H5A	0.9861	0.6788	0.0691	0.076*	
C6	1.2320 (4)	0.6435 (2)	-0.03847 (17)	0.0733 (6)	
H6A	1.1579	0.5808	-0.0525	0.088*	
C7	1.1296 (3)	0.87101 (16)	0.12331 (15)	0.0557 (4)	
C8	0.9716 (3)	0.81969 (14)	0.21872 (14)	0.0487 (4)	
C9	1.1937 (3)	0.63087 (16)	0.31196 (15)	0.0582 (5)	
H9A	1.3439	0.6594	0.3154	0.070*	
C10	0.9086 (4)	0.52367 (17)	0.32519 (19)	0.0736 (6)	
H10A	0.8222	0.4566	0.3425	0.088*	
C11	0.8102 (3)	0.88957 (15)	0.25517 (14)	0.0522 (4)	
H11A	0.7981	0.9669	0.2131	0.063*	
C12	0.6506 (3)	0.86366 (14)	0.35025 (13)	0.0475 (4)	
C13	0.6915 (3)	0.77059 (16)	0.44322 (14)	0.0554 (4)	
H13A	0.8248	0.7190	0.4452	0.067*	
C14	0.5387 (3)	0.75364 (16)	0.53190 (15)	0.0564 (4)	
H14A	0.5684	0.6911	0.5931	0.068*	
C15	0.3405 (3)	0.83027 (15)	0.52953 (14)	0.0524 (4)	
C16	0.2943 (3)	0.92271 (17)	0.43910 (16)	0.0637 (5)	
H16A	0.1595	0.9733	0.4373	0.076*	
C17	0.4495 (3)	0.93960 (15)	0.35136 (15)	0.0586 (5)	
H17A	0.4198	1.0033	0.2911	0.070*	
N1	0.9986 (2)	0.69650 (11)	0.26747 (11)	0.0466 (3)	
N2	0.8100 (3)	0.62670 (13)	0.27539 (14)	0.0621 (4)	
N3	1.1434 (3)	0.52092 (14)	0.34991 (15)	0.0737 (5)	
01	1.1701 (3)	0.97469 (12)	0.10500 (12)	0.0776 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1303 (6)	0.1091 (5)	0.0559 (3)	0.0454 (4)	0.0020 (3)	-0.0198 (3)
Cl2	0.0717 (3)	0.0773 (4)	0.0663 (3)	0.0119 (3)	0.0173 (2)	-0.0097 (3)
C1	0.0846 (14)	0.0750 (14)	0.0403 (10)	0.0208 (11)	0.0000 (9)	-0.0016 (9)
C2	0.0633 (12)	0.0815 (15)	0.0578 (12)	0.0082 (11)	0.0113 (9)	0.0014 (10)
C3	0.0629 (11)	0.0632 (12)	0.0620 (12)	-0.0054 (9)	0.0100 (9)	-0.0024 (9)
C4	0.0524 (10)	0.0568 (10)	0.0446 (9)	-0.0020 (8)	0.0029 (7)	-0.0033 (8)
C5	0.0644 (12)	0.0749 (13)	0.0514 (11)	-0.0129 (10)	0.0062 (9)	-0.0143 (9)
C6	0.0929 (16)	0.0733 (13)	0.0536 (11)	-0.0080 (11)	-0.0012 (11)	-0.0158 (10)
C7	0.0547 (10)	0.0540 (11)	0.0542 (10)	-0.0096 (8)	0.0019 (8)	-0.0052 (8)
C8	0.0478 (9)	0.0483 (9)	0.0477 (9)	-0.0061 (7)	-0.0004 (7)	-0.0079 (7)
C9	0.0458 (9)	0.0616 (11)	0.0635 (11)	0.0033 (8)	0.0018 (8)	-0.0117 (9)
C10	0.0772 (14)	0.0486 (11)	0.0915 (16)	-0.0111 (10)	0.0164 (12)	-0.0116 (10)
C11	0.0581 (10)	0.0459 (9)	0.0495 (9)	-0.0011 (8)	-0.0021 (8)	-0.0070 (7)
C12	0.0507 (9)	0.0439 (9)	0.0483 (9)	-0.0003 (7)	-0.0032 (7)	-0.0131 (7)
C13	0.0527 (10)	0.0569 (10)	0.0523 (10)	0.0133 (8)	-0.0012 (8)	-0.0102 (8)
C14	0.0606 (11)	0.0529 (10)	0.0495 (10)	0.0077 (8)	-0.0020 (8)	-0.0051 (8)
C15	0.0532 (10)	0.0534 (10)	0.0514 (10)	0.0010 (8)	0.0013 (8)	-0.0161 (8)
C16	0.0636 (11)	0.0584 (11)	0.0634 (12)	0.0193 (9)	0.0022 (9)	-0.0113 (9)
C17	0.0719 (12)	0.0465 (9)	0.0517 (10)	0.0112 (8)	-0.0022 (9)	-0.0061 (8)
N1	0.0400 (7)	0.0463 (7)	0.0520 (8)	-0.0052 (6)	0.0049 (6)	-0.0101 (6)
N2	0.0496 (8)	0.0545 (9)	0.0815 (11)	-0.0141 (7)	0.0071 (8)	-0.0146 (8)
N3	0.0744 (11)	0.0538 (10)	0.0842 (12)	0.0101 (8)	0.0069 (9)	-0.0065 (8)
01	0.0930 (10)	0.0584 (9)	0.0789 (10)	-0.0199 (7)	0.0262 (8)	-0.0121 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

1.745 (2)	C9—N1	1.342 (2)
1.743 (2)	С9—Н9А	0.9300
1.372 (3)	C10—N2	1.311 (3)
1.379 (3)	C10—N3	1.351 (3)
1.381 (3)	C10—H10A	0.9300
0.9300	C11—C12	1.461 (2)
1.398 (3)	C11—H11A	0.9300
0.9300	C12—C13	1.397 (2)
1.389 (3)	C12—C17	1.398 (2)
1.492 (3)	C13—C14	1.377 (2)
1.386 (3)	C13—H13A	0.9300
0.9300	C14—C15	1.384 (2)
0.9300	C14—H14A	0.9300
1.224 (2)	C15—C16	1.377 (3)
1.499 (2)	C16—C17	1.375 (3)
1.343 (2)	C16—H16A	0.9300
1.428 (2)	C17—H17A	0.9300
1.311 (3)	N1—N2	1.366 (2)
121.6 (2)	N2-C10-H10A	122.1
118.80 (18)	N3—C10—H10A	122.1
	$\begin{array}{c} 1.745 \ (2) \\ 1.743 \ (2) \\ 1.372 \ (3) \\ 1.379 \ (3) \\ 1.381 \ (3) \\ 0.9300 \\ 1.398 \ (3) \\ 0.9300 \\ 1.389 \ (3) \\ 1.492 \ (3) \\ 1.386 \ (3) \\ 0.9300 \\ 0.9300 \\ 1.224 \ (2) \\ 1.499 \ (2) \\ 1.343 \ (2) \\ 1.428 \ (2) \\ 1.311 \ (3) \end{array}$	1.745 (2) $C9-N1$ $1.743 (2)$ $C9-H9A$ $1.372 (3)$ $C10-N2$ $1.379 (3)$ $C10-N3$ $1.379 (3)$ $C10-H10A$ 0.9300 $C11-C12$ $1.398 (3)$ $C11-H11A$ 0.9300 $C12-C13$ $1.389 (3)$ $C12-C17$ $1.492 (3)$ $C13-C14$ $1.386 (3)$ $C13-H13A$ 0.9300 $C14-C15$ 0.9300 $C14-C15$ 0.9300 $C14-C15$ 0.9300 $C14-H14A$ $1.224 (2)$ $C15-C16$ $1.499 (2)$ $C16-C17$ $1.343 (2)$ $C16-H16A$ $1.428 (2)$ $C17-H17A$ $1.311 (3)$ $N1-N2$ $121.6 (2)$ $N2-C10-H10A$ $118.80 (18)$ $N3-C10-H10A$

C6—C1—Cl1	119.6 (2)	C8—C11—C12	130.38 (16)
C1—C2—C3	119.1 (2)	C8—C11—H11A	114.8
C1—C2—H2A	120.5	C12—C11—H11A	114.8
C3—C2—H2A	120.5	C13—C12—C17	117.31 (16)
C2—C3—C4	120.7 (2)	C13—C12—C11	124.22 (15)
С2—С3—НЗА	119.6	C17—C12—C11	118.39 (15)
С4—С3—НЗА	119.6	C14—C13—C12	121.34 (16)
C5—C4—C3	118.93 (19)	C14—C13—H13A	119.3
C5—C4—C7	123.74 (16)	С12—С13—Н13А	119.3
C3—C4—C7	117.23 (18)	C13—C14—C15	119.61 (16)
C6—C5—C4	120.40 (19)	C13—C14—H14A	120.2
С6—С5—Н5А	119.8	C15—C14—H14A	120.2
C4—C5—H5A	119.8	C16—C15—C14	120.58 (17)
C1—C6—C5	119.2 (2)	C16—C15—Cl2	119.85 (14)
С1—С6—Н6А	120.4	C14—C15—Cl2	119.56 (14)
С5—С6—Н6А	120.4	C17—C16—C15	119.36 (17)
O1—C7—C4	120.59 (16)	C17—C16—H16A	120.3
O1—C7—C8	118.20 (17)	C15—C16—H16A	120.3
C4—C7—C8	121.21 (16)	C16—C17—C12	121.78 (17)
C11—C8—N1	122.27 (15)	С16—С17—Н17А	119.1
C11—C8—C7	119.71 (16)	С12—С17—Н17А	119.1
N1—C8—C7	118.02 (14)	C9—N1—N2	109.33 (15)
N3—C9—N1	110.62 (17)	C9—N1—C8	129.36 (14)
N3—C9—H9A	124.7	N2—N1—C8	121.31 (13)
N1—C9—H9A	124.7	C10—N2—N1	101.71 (16)
N2—C10—N3	115.89 (18)	C9—N3—C10	102.45 (16)
C6—C1—C2—C3	1.4 (3)	C17—C12—C13—C14	0.6 (3)
Cl1—C1—C2—C3	-177.75 (14)	C11—C12—C13—C14	177.44 (17)
C1—C2—C3—C4	0.0 (3)	C12—C13—C14—C15	-0.2 (3)
C2—C3—C4—C5	-0.6 (3)	C13—C14—C15—C16	0.4 (3)
C2—C3—C4—C7	-177.11 (17)	C13—C14—C15—Cl2	-179.19 (14)
C3—C4—C5—C6	-0.1 (3)	C14—C15—C16—C17	-1.1 (3)
C7—C4—C5—C6	176.17 (18)	Cl2—C15—C16—C17	178.52 (15)
C2-C1-C6-C5	-2.1 (3)	C15—C16—C17—C12	1.6 (3)
Cl1—C1—C6—C5	177.06 (15)	C13—C12—C17—C16	-1.3 (3)
C4—C5—C6—C1	1.4 (3)	C11—C12—C17—C16	-178.32 (18)
C5—C4—C7—O1	-150.2 (2)	N3—C9—N1—N2	-0.5 (2)
C3—C4—C7—O1	26.1 (3)	N3—C9—N1—C8	178.82 (17)
C5—C4—C7—C8	30.1 (3)	C11—C8—N1—C9	-122.4 (2)
C3—C4—C7—C8	-153.57 (17)	C7—C8—N1—C9	58.0 (2)
O1-C7-C8-C11	25.1 (3)	C11—C8—N1—N2	56.9 (2)
C4—C7—C8—C11	-155.23 (17)	C7—C8—N1—N2	-122.75 (17)
O1—C7—C8—N1	-155.21 (17)	N3—C10—N2—N1	0.0 (2)
C4—C7—C8—N1	24.5 (2)	C9—N1—N2—C10	0.3 (2)
N1-C8-C11-C12	5.7 (3)	C8—N1—N2—C10	-179.08 (16)
C7—C8—C11—C12	-174.66 (17)	N1-C9-N3-C10	0.5 (2)
C8—C11—C12—C13	23.4 (3)	N2-C10-N3-C9	-0.3 (3)
C8—C11—C12—C17	-159.82 (19)		